

Database Genetics and Cosmetics:
The Adager Approach
F. Alfredo Rego
Adager Corporation
Sun Valley, Idaho 83353-3000 • USA

www.adager.com

Root files and
dataset files

In my Christmas card of 1978, I mentioned that a database trans-
formation involves two distinct (equally delicate) operations: a
genetic change in the root file and a cosmetic adjustment in the
datasets. Little did I know that the next three decades of my life
would be dedicated to learning and implementing the painstaking
technologies required by such a simple concept.

To appreciate the issues involved, let’s look at a familiar example.
As unbelievable as it may seem, some people with straight hair
would prefer wavy hair (and some people with wavy hair would
prefer straight hair). If you doubt the validity of this observation,
just go to your neighborhood beauty parlor! The beauty salon
provides cosmetic changes to hair that already exists.
Unfortunately, the genetics remain unchanged and any new hair
will stubbornly come out looking as it always did (a little more
damaged, perhaps, but still basically the same).

In human terms, cosmetic engineering is “mature”, whereas
genetic engineering is a new (and somewhat frightening) area of
concern. The opposite is true in database genetics and cosmetics.
The database genes, kept in the root file, are trivial to modify (the
obvious thing to do is to edit a schema and run DBSCHEMA to
create a new root file). The true challenge involves the cosmetics:
How do you synchronize the existing datasets to the new root file?
How do you map millions of entries from the old datasets to the
newly transformed datasets in an efficient way? You cannot afford
to have your database “down for maintenance” for too long.
Therefore, you must do the required cosmetic changes as fast as
possible.

State transitionsCosmetic changes in a database require the mapping of datasets.
There are many ways to map datasets within the constraints of the
• Database Genetics and Cosmetics: The Adager Approach 1

http://www.adager.com

HP3000. How does Adager transform a database? By means of two
internal data structures which model the current and original states
of the database. At the beginning, the “current” state is identical to
the “original” state. As you specify changes, the current state
evolves.

Applying changes At any time during the specification phase, you may ask Adager to
apply the changes or you may continue specifying new changes. If
and when you decide to apply the changes, Adager will use the
“original genetics” to read your data from the “original datasets”
and will transform your data in such a way that the new datasets
will reflect your accumulated specifications.

Consolidating
changes

Adager will do its best to minimize wasteful operations. In most
cases, this means that Adager will consolidate as many changes as
possible while it scans a transformed dataset. After lots of trials
(and errors), we found that certain operations were not very socia-
ble and did not interact well with their fellows. Instead of spending
(even more) sleepless nights trying to figure out a way to civilize
them, we decided to segregate them, since they were like hermits
anyway. They performed best by themselves and the other transfor-
mations performed best by themselves. The two segregated kinds of
Adager functions are SOME types of “fixing” and MOST types of
“transforming” operations. For instance, we found that it was a
better idea to repack datasets either before or after transforming
them (repacking is a certain type of “fixing”, since it fixes inefficien-
cies in the access of entries within datasets). However, we also
found that fixing broken free-entry lists in detail datasets could be
trivially done while transforming the datasets. So, as frustrating as
it is, there are no absolute rules!

Sequence of
events

Adager uses a critical-path method (CPM) to decide which
sequence of operations has the highest likelihood of minimizing the
total elapsed time. If you prefer to use your own sequence, you can
certainly ask Adager to do its functions one-at-a-time.

Adager’s syntax
and

DBSCHEMA’s
syntax

The syntax of your specifications to Adager is remarkably similar to
DBSCHEMA’s syntax. This means that you do not have to learn
anything new: If you can specify a database through DBSCHEMA,
you can maintain and modify that database through Adager. The
similarity stops there, though, since Adager’s response to illegal
specifications is more forgiving than DBSCHEMA’s and will allow
2 Database Genetics and Cosmetics: The Adager Approach •

you to correct illegal specifications on the spot (if you are in ses-
sion mode).

Some computer-
science jargon:
Adager’s stacks

and recursive
operations

Since Adager’s internal data structures are implemented as stacks,
you can do some really neat things that would be impossible other-
wise. For instance, you can simultaneously rename and relocate
items and datasets without causing any confusion in Adager’s logic
and you can easily specify changes in a recursive manner, such as
requesting a path to a non-existing dataset. In this case, Adager will
let you specify the new dataset which, in turn, may have new fields
that are not defined as items yet. Adager knows all of this and
guides you through the required recursive maze. Once you clear up
all these pending pieces of business, Adager returns you automati-
cally to the task that began the whole recursive trip and you can
continue on your merry way!

Different versions
of IMAGE
databases

The genetics and cosmetics of IMAGE/3000 are slightly different
from the genetics and cosmetics of TurboIMAGE and IMAGE/SQL.
But the fundamental Adager approach remains the same: Adager
handles all mutations with equal ease.
• Database Genetics and Cosmetics: The Adager Approach 3

	Database Genetics and Cosmetics: The Adager Approach
	Root files and dataset files
	State transitions
	Applying changes
	Consolidating changes
	Sequence of events
	Adager’s syntax and DBSCHEMA’s syntax
	Some computer- science jargon: Adager’s stacks and recursive operations
	Different versions of IMAGE databases

